Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Indah Raya, Ibrahim Baba, Fatimatul Z. Rosli and Bohari M. Yamin*

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
Disorder in main residue
R factor $=0.041$
$w R$ factor $=0.125$
Data-to-parameter ratio $=15.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(N-isopropyl- N-phenylthiocarbamoyl) disulfide

The NCS_{2} groups in the title compound, $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{~S}_{4}$, are approximately perpendicular to each other, forming a dihedral angle of $80.10(7)^{\circ}$. The $S-S$ bond length is $2.0086(14) \AA$ and the distance between the two terminal S atoms is 3.940 (3) \AA.

Comment

Some metal-dithiocarbamate complexes are not stable in solution and, upon recrystallization, lead to the formation of decomposition products. One such example is dipyrrolidinylthiuram disulfide, which was obtained from the recrystallization of $\left[\mathrm{Fe}\left\{\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2}\right)_{4}\right\}_{3}\right]$ from methanol solution (Yamin et al., 1996). Similarly, the title compound, (I), was obtained after recrystallization from a chloroform solution of $\left[\mathrm{Eu}\left(\mathrm{S}_{2} \mathrm{NC}_{10} \mathrm{H}_{13}\right)_{3}(1,10\right.$-phenanthroline $\left.)\right]$.

(I)

The molecular structure of (I), Fig. 1, is isostructural with other thiuram disulfides, such as tetraethylthiuram disulfide (Karle et al., 1967) and bis(N-methyl- N-phenylthiocarbamoyl)disulfide (Fun et al., 2001). The S2-S3, C10-S2, $\mathrm{C} 10-\mathrm{S} 1, \mathrm{C} 11-\mathrm{S} 3$ and $\mathrm{C} 11-\mathrm{S} 4$ bond distances in (I) are in agreement with these thiuram disulfides (Table 1). However,

Figure 1
The molecular structure of (I), with 50% probability displacement ellipsoids. The dashed line denotes a $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bond. Only the major disordered component of C 13 is shown.

Received 16 August 2005 Accepted 24 August 2005 Online 7 September 2005
the $\mathrm{C} 10-\mathrm{S} 2-\mathrm{S} 3-\mathrm{C} 11$ torsion angle of $78.70(13)^{\circ}$ is smaller than the value of approximately 96° observed in tetraethylthiuram disulfide (Karle et al., 1967).

Each of the S3/S4/N2/C11/C15 and S1/S2/N1/C7/C10 fragments is planar, with the maximum deviation for either of these being 0.027 (2) \AA for atom N1. The dihedral angle between the two least-squares planes through these groups is 80.10 (7) ${ }^{\circ}$. The two phenyl groups, $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 15-\mathrm{C} 20$, are inclined to each other by $67.70(15)^{\circ}$.

The molecule of (I) is stablized by an intramolecular interaction, with $\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{~S} 1=2.59 \AA[\mathrm{C} 7 \cdots \mathrm{~S} 1=$ 3.068 (4) \AA] , and the angle subtended at the H atom is 110°.

Experimental

The starting $\mathrm{Eu}\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NS}_{2}\right)_{3}(1,10$-phenanthroline $\left.)\right]$ complex was prepared following the method described by Su et al. (1995). Recrystallization of this complex from chloroform solution yielded crystals of (I) (m.p. 416-418 K).

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{~S}_{4}$
$M_{r}=419.64$
Triclinic,,$\overline{1}$
$a=8.911(7) \AA$
$b=11.568(9) \AA$
$c=12.595(10) \AA$
$\alpha=113.74(11)^{\circ}$
$\beta=97.157(14)^{\circ}$
$\gamma=106.082(13){ }^{\circ}$
$V=1100.1(15) \AA^{\circ}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.267 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 3456 \\
& \quad \text { reflections } \\
& \theta=1.8-25.0^{\circ} \\
& \mu=0.44 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.33 \times 0.32 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD areadetector diffractometer ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\min }=0.868, T_{\max }=0.957$
9761 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.125$
$S=1.05$
3795 reflections
240 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

S1-C10	$1.642(3)$	$\mathrm{N} 1-\mathrm{C} 6$	$1.446(3)$
S2-C10	$1.817(3)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.484(3)$
$\mathrm{S} 2-\mathrm{S} 3$	$2.0078(15)$	$\mathrm{N} 2-\mathrm{C} 11$	$1.333(3)$
S3-C11	$1.819(3)$	$\mathrm{N} 2-\mathrm{C} 15$	$1.445(3)$
S4-C11	$1.644(3)$	$\mathrm{N} 2-\mathrm{C} 12$	$1.492(3)$
N1-C10	$1.339(3)$		
			$127.04(19)$
N1-C10-S1	$126.3(2)$	$\mathrm{N} 2-\mathrm{C} 11-\mathrm{S} 4$	$110.37(18)$
N1-C10-S2	$110.83(18)$	$\mathrm{N} 2-\mathrm{C} 11-\mathrm{S} 3$	$122.58(15)$
S1-C10-S2	$122.82(15)$	$\mathrm{S} 4-\mathrm{C} 11-\mathrm{S} 3$	
			$179.36(18)$
C6-N1-C10-S1	$174.94(17)$	$\mathrm{C} 15-\mathrm{N} 2-\mathrm{C} 11-\mathrm{S} 4$	$-1.7(3)$
C6-N1-C10-S2	$-5.4(3)$	$\mathrm{C} 15-\mathrm{N} 2-\mathrm{C} 11-\mathrm{S} 3$	

All H atoms were placed geometrically in ideal positions and allowed to ride on their parent C atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ (aromatic), $0.99 \AA$ (methine) and $0.97 \AA$ (methyl), and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (aromatic and methine-C) and $1.5 U_{\text {eq }}$ (methyl-C). Atom C13 was found to be disordered and was refined isotropically in two alternative positions, with refined occupancy factors of 0.71 (2) and 0.29 (2).

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for research grant No. IRPA 09-02-02-0048-EA144.

References

Fun, H.-K., Chantrapromma, S., Razak, I. A., Bei, F., Jian, F., Yang, X., Lu, L. \& Wang, X. (2001). Acta Cryst. E57, o717-o718.
Karle, I. L., Estlin, J. A. \& Britts, K. (1967). Acta Cryst. 22, 273-280.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Su, C., Tang, N., Tan, M. \& Yo, K. (1995). Polyhedron, 15, 233-237.
Yamin, B. M., Suwandi, A. A., Fun, H.-K., Sivakumar, K. \& Shawkataly, O. B. (1996). Acta Cryst. C52, 951-953.

